Structure Learning of Mixed Graphical Models
نویسندگان
چکیده
We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme is new and follows naturally from a particular parametrization of the model.
منابع مشابه
Learning Mixed Graphical Models
We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our app...
متن کاملLearning mixed graphical models from data with p larger than n
Structure learning of Gaussian graphical models is an extensively studied problem in the classical multivariate setting where the sample size n is larger than the number of random variables p, as well as in the more challenging setting when p n. However, analogous approaches for learning the structure of graphical models with mixed discrete and continuous variables when p n remain largely unexp...
متن کاملLearning the Structure of Mixed Graphical Models.
We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our app...
متن کاملOn Sparse Gaussian Chain Graph Models
In this paper, we address the problem of learning the structure of Gaussian chain graph models in a high-dimensional space. Chain graph models are generalizations of undirected and directed graphical models that contain a mixed set of directed and undirected edges. While the problem of sparse structure learning has been studied extensively for Gaussian graphical models and more recently for con...
متن کاملSelective Inference and Learning Mixed Graphical Models
This thesis studies two problems in modern statistics. First, we study selective inference, or inference for hypothesis that are chosen after looking at the data. The motiving application is inference for regression coefficients selected by the lasso. We present the Condition-onSelection method that allows for valid selective inference, and study its application to the lasso, and several other ...
متن کامل